A kinematic model for 3-D head-free gaze-shifts

نویسندگان

  • Mehdi Daemi
  • J. Douglas Crawford
چکیده

Rotations of the line of sight are mainly implemented by coordinated motion of the eyes and head. Here, we propose a model for the kinematics of three-dimensional (3-D) head-unrestrained gaze-shifts. The model was designed to account for major principles in the known behavior, such as gaze accuracy, spatiotemporal coordination of saccades with vestibulo-ocular reflex (VOR), relative eye and head contributions, the non-commutativity of rotations, and Listing's and Fick constraints for the eyes and head, respectively. The internal design of the model was inspired by known and hypothesized elements of gaze control physiology. Inputs included retinocentric location of the visual target and internal representations of initial 3-D eye and head orientation, whereas outputs were 3-D displacements of eye relative to the head and head relative to shoulder. Internal transformations decomposed the 2-D gaze command into 3-D eye and head commands with the use of three coordinated circuits: (1) a saccade generator, (2) a head rotation generator, (3) a VOR predictor. Simulations illustrate that the model can implement: (1) the correct 3-D reference frame transformations to generate accurate gaze shifts (despite variability in other parameters), (2) the experimentally verified constraints on static eye and head orientations during fixation, and (3) the experimentally observed 3-D trajectories of eye and head motion during gaze-shifts. We then use this model to simulate how 2-D eye-head coordination strategies interact with 3-D constraints to influence 3-D orientations of the eye-in-space, and the implications of this for spatial vision.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Neural Model of Coordinated Head and Eye Movement Control

Gaze shifts require the coordinated movement of both the eyes and the head in both animals and humanoid robots. To achieve this the brain and the robot control system needs to be able to perform complex non-linear sensory-motor transformations between many degrees of freedom and resolve the redundancy in such a system. In this article we propose a hierarchical neural network model for performin...

متن کامل

Neural control of 3-D gaze shifts in the primate.

The neural mechanisms that specify target locations for gaze shifts and then convert these into desired patterns of coordinated eye and head movements are complex. Much of this complexity is only revealed when one takes a realistic three-dimensional (3-D) view of these processes, where fundamental computational problems such as kinematic redundancy, reference-frame transformations, and non-comm...

متن کامل

Electrical stimulation of the frontal eye fields in the head-free macaque evokes kinematically normal 3D gaze shifts.

The frontal eye field (FEF) is a region of the primate prefrontal cortex that is central to eye-movement generation and target selection. It has been shown that neurons in this area encode commands for saccadic eye movements. Furthermore, it has been suggested that the FEF may be involved in the generation of gaze commands for the eye and the head. To test this suggestion, we systematically sti...

متن کامل

Analysis of primate IBN spike trains using system identification techniques. II. Relationship to gaze, eye, and head movement dynamics during head-free gaze shifts.

We have investigated the relationships among the firing frequency B(t) of inhibitory burst neurons (IBNs) and the metrics and dynamics of the eye, head, and gaze (eye + head) movements generated during voluntary combined eye-head gaze shifts in monkey. The same IBNs were characterized during head-fixed saccades in our first of three companion papers. In head-free gaze shifts, the number of spik...

متن کامل

Perisaccadic mislocalization of visual targets by head-free gaze shifts: visual or motor?

Such perisaccadic mislocalization is maximal in the direction of the saccade and varies systematically with the target-saccade onset delay. We have recently shown that under head-fixed conditions perisaccadic errors do not follow the quantitative predictions of current visuomotor models that explain these mislocalizations in terms of spatial updating. These models all assume sluggish eye-moveme...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2015